

Web-based API for the

eMerge™ Browser Managed Security Platform

 API Version 2.5

Version 2.5, March 25, 2007 International Electronics, Inc.

1

Version 2.5, March 25, 2007 International Electronics, Inc.

2

Table of Contents

Overview...3

Database Architecture .. 3

Calling the API ..4

Retrieving the version of the API .. 6

API Commands and Parameters ..6

Access Levels in EditPerson .. 19
Date Formats.. 20
Using the ENCODEDNUM, HOTSTAMP, CARDID and CARDNUM Parameters
in AddCredential ... 20
The CARDNUM Parameter and Card Format in AddCredential 21
Response to GetPerson ... 22
Calling SearchPersonData ... 22
Response to SearchPersonData .. 23
Response to GetAccessLevels... 24
Response to the GetAccessCardDetails Command... 24
Response to the GetAccessDataLog Command .. 26
Calling EditThreatLevelGroup... 27
Calling GetPortals... 28
Response to the GetPortals ... 28
Calls and Responses to GetAccessHistory .. 29
Notes on TimeSpecs and TimeSpecGroups .. 31
Calling GetTimeSpec.. 31
Response to GetTimeSpec .. 32
Calling GetTimeSpecs .. 32
Response to GetTimeSpecs... 32
Calling GetTimeSpecGroup.. 33
Response to GetTimeSpecGroup... 33
Calling GetTimeSpecGroups .. 33
Response to GetTimeSpecGroups... 33
Errors in API Processing .. 34

Message Authentication Code ..35

Generating the MAC... 35

Examples..36

Overview
The IEI eMerge is an integrated security management network appliance that supports access
control, alarm monitoring, video surveillance, temperature monitoring, intercom, and administrative
functions. Individual EMerge units are typically deployed to manage security for single facilities, and
may be networked for the purpose of building larger security networks.

Internally, the EMerge deploys the familiar three-tier architecture in which the database tier uses
MySQL, the web server is based on GoAhead’s embedded web server, and the business logic is
provided by IEI Security Corporation. All components managed by the EMerge are network-
connected, and are managed through a web-based user interface.

This document describes the API for the EMerge that permits network-connected systems to perform
various operations with the EMerge under program control.

Database Architecture
The database server embedded in the IEI Network Controller (IEINC) is MySQL, specifically licensed
for this application. While the DBMS supports ODBC, to avoid conflict with possible future schema
changes all database interaction should be accomplished through the API.

With regard to the access control subsystem, a fragment of the database schema is shown below.
The database includes a table of “people”, whose records act as container objects for attributes
attached to people in real life. People are mapped to access levels which specify access privilege
and to access cards, the credentials used for access control.

It is assumed that the access levels will be input into the system using the normal web user interface
for the EMerge, and that people and cards may be entered either through the web user interface or
through the API. Likewise, card formats are entered through the standard web user interface. Note
that because records of the Person table are basically container objects, a Person record must exist
before an AccessCard or PersonToAccessLevel record is associated with it. The API provides a
mechanism for accomplishing this by splitting the entry of the Person record from the credentials
associated with that person. This is a two-step operation in the API, while the user interface
encapsulates it as a single operation.

Version 2.5, March 25, 2007 International Electronics, Inc.

3

Version 2.5, March 25, 2007 International Electronics, Inc.

4

Calling the API
The API for the IEI eMerge is invoked by POSTing an HTTP message to the web server on the IEI
Network Controller (IEINC). The message includes a single form parameter whose name is
“APIcommand,” and whose value is a blob of XML that contains the API command(s) described
below.

API commands are accepted at address:

http://<eMerge address>/goforms/nbapi

The IP port for these commands is the port at which the EMerge web server responds and is set with
the SETUP > SITE SETTINGS > NETWORK CONTROLLER command. It defaults to port 80. By
way of example, commands for a network controller located at 192.168.0.220 port 8080 go to
http://192.168.0.220:8080/goforms/nbapi.

The XML API command passed to the EMerge is wrapped in <NETBOX-API> tags. Within those
tags are one or more1 <COMMAND> blocks that contain individual API commands and a single <MAC>
entry containing the computed message authentication code for the entire contents of the XML blob.
Return information is passed back to the calling program from the web server, also in XML format.

The <COMMAND> block includes a command name attribute (name=) defined in the table below, a
command number attribute2 (num=) which serves to connect a given command with its response,
and a block of parameters enclosed within <PARAMS> tags. Parameters are uniquely named, also
as defined in the table below. Multiple <COMMAND> blocks can be included in a single blob of XML.

Each message sent by the caller contains a sequence number that is part of the message
authentication code in the <MAC> tag. It is up to the caller to increment the sequence numbers; the
EMerge remembers the highest sequence number that is has seen, and will reject messages that
have sequence numbers less than or equal to that number.3

XML tags that are not supported by the API but are syntactically valid XML are ignored. The
structure of the XML blob is as follows:

<NETBOX-API>
 <COMMAND name=command-name1 num=”1” dateformat=”tzoffset”>
 <PARAMS>
 <PARAM1> … value 1 … </PARAM1>
 <PARAM2> … value 2 … </PARAM2>
 .
 .
 .
 </PARAMS>
 </COMMAND>
 <COMMAND name=command-name2 num=”2”>
 <PARAMS>

1 The maximum number of <COMMAND> blocks that can be sent to the API is 32.
2 The num= attribute is a number in the range from 1 to 32 (depending upon how many commands are
provided. There can be no gaps in the numbering, so, for example, if there are two commands, they must
be num=1 and num=2.
3 The system administrator has the option of turning off message authentication from the S2 NetBox user
interface if there are other methods of data security in place. It is up to the caller to remember the highest
sequence number transacted, and to always transact sequence numbers higher than the last one. If that
becomes impossible, an option in the S2 NetBox user interface can be used to reset the sequence
numbering.

Version 2.5, March 25, 2007 International Electronics, Inc.

5

 <PARAM1> … value 1 … </PARAM1>
 <PARAM2> … value 2 … </PARAM2>
 .
 .
 .
 </PARAMS>
 </COMMAND>
 .
 .
 .
 <MAC> …authentication code as hex digits … </MAC>
</NETBOX-API>

The “dateformat” attribute on a command is optional. If it is supplied, dates are returned with an
additional timezone offset included (see below for date format).

In response4 to the API call, a blob of XML5 is returned as follows, with each command generating a
<RESPONSE> block that includes a “name=” attribute indicating the type of command to which it
applies and a “num=” attribute indicating the instance, as follows:

<NETBOX>
 <RESPONSE command=command-name1 num=”1”>
 <CODE> …response code text… </CODE>
 <DETAILS> …response details… </DETAILS>
 </RESPONSE>
 <RESPONSE command=command-name2 num=”2”>
 <CODE> …response code text… </CODE>
 <DETAILS> …response details… </DETAILS>
 </RESPONSE>
 .
 .
 .
</NETBOX>

4 No <MAC> is required for message responses because they are associated only with specific API
requests.
5 The maximum size of a response block is 8192 (8K) bytes.

Version 2.5, March 25, 2007 International Electronics, Inc.

6

Retrieving the version of the API
For versions 2.1 and newer, an XML command <GetAPIVersion> exists that will return
<APIVERSION> with the appropriate version string. Versions of the API older than 2.1 do not
recognize this command.

Therefore a request such as:

<NETBOX-API>
 <COMMAND name=GetAPIVersion num=”1”>
 </COMMAND>
</NETBOX-API>

Will return (in the case of this version):

<NETBOX-API>
 <RESPONSE command=GetAPIVersion num=”1”>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <APIVERSION>2.2</APIVERSION>
 </DETAILS>
 </RESPONSE>
</NETBOX-API>

API Commands and Parameters
The API supports these commands:

• AddPerson – allows you to add a new Person to the system. This will return an error if the
Person already exists (identified by a passed in PERSONID). If no PERSONID is supplied, one is
created for the Person.

• ModifyPerson – allows you to modify an existing Person. PERSONID is required, and the call
will fail if it does not match on an existing Person.

This may be used to DELETE or UNDELETE a Person, as in the API.

• EditPerson – adds or modifies a person record to the database. The use of this is deprecated
in 2.5 – AddPerson and ModifyPerson are preferred. This command associates a name and
access level(s) with a person ID6. In order to associate a credential with the person, subsequent
commands are issued to add credentials.

The Edit person command operates as follows:

1. If a PERSONID is not supplied, then the data is entered into the Person table and the
PERSONID of the new Person is returned to the caller or zero is returned if the add fails. In
this case, the PERSONID will be assigned by the system and will be of the form “_nnnnnnn”
(underscore followed by a sequence of digits).

2. If a PERSONID is supplied by the caller and a Person with that ID does not exist in the
database then the Person record is created and the PERSONID is returned to the caller or
zero is returned if the add fails.

6 A PERSONID is a text field supplied by the caller that is displayed in the “ID” field of the person record
in the user interface. Typically this field holds an identifier of significance to the calling application’s
database such as an employee number.

Version 2.5, March 25, 2007 International Electronics, Inc.

7

3. If a PERSONID is supplied by the caller and a Person already exists in the database with
that ID, then the record in the database is replaced by the data supplied by the caller and the
PERSONID is returned or zero is returned if the operation failed.

EditPerson may also be used to Delete or “Undelete” a Person, as in the UI.

• RemovePerson – removes a person7 and all associated credentials from the database.

• GetPerson – returns data about a Person.

• SearchPersonData – retrieves information about 1 or more people, based on various search
criteria.

• AddCredential – adds a credential to a person already in the database.

• RemoveCredential – removes a credential from a person already in the database.

• GetCardFormats - retrieves a list of the names of the defined card formats.

• AddAccessLevel – add a new access level.

• ModifyAccessLevel – modify an existing access level.

• RemoveAccessLevel – delete an access level.

• GetAccessLevel – retrieve information about an access level.

• GetAccessLevels – returns a list of names of the valid access levels in the system.

• PingApp – heartbeat for the application. Used only for the caller to determine the health of the
EMerge.

• GetAPIVersion (2.1 and newer) – retrieves the current version of the NBAPI from the server.

• GetAccessDataLog – retrieve a data log from the history. The use of this is deprecated. Use
GetAccessHistory instead.

The GetAccessDataLog command operates as follows:

1. The caller issues the GetAccessDataLog command passing the LOGID of the last data log
retrieved from the API.

2. If the caller does not know the LOGID of the last data log, then the caller passes zero to the
GetAccessDataLog command and the command returns the last data log in the system with
its LOGID.

3. The caller adds one (1) to the LOGID of the last log received, and requests the data log with
that LOGID. If no such data log exists (that is, if the LOGID passed was for the last log in
the system), then the API will return a LOGID of zero.

• GetAccessCardDetails – returns recent card access events and related information given a
CARDID and CARDFORMAT.

• AddThreatLevel – add in a new Threat Level.

• ModifyThreatLevel – modify an existing Threat Level.

• EditThreatLevel – add a new or edit an existing Threat Level The use of this is deprecated in
2.5 – AddThreatLevel and ModifyThreatLevel are preferred.

• RemoveThreatLevel – delete a Threat Level.

• SetThreatLevel – change the Threat Level in the system.

7 RemovePerson actually disables the person record, leaving it in the database so that reports of history
continue to function. Access levels and credential records are actually deleted, however.

Version 2.5, March 25, 2007 International Electronics, Inc.

8

• AddThreatLevelGroup – add a new Threat Level Group.

• ModifyThreatLevelGroup – modify threat level members in an existing threat level group.

• EditThreatLevelGroup – add a new or modify an existing Threat Levevl Group. The use of this
is deprecated in 2.5 – AddThreatLevelGroup and ModifyThreatLevelGroup are preferred.

• RemoveThreatLevelGroup – remove a threat level group.

• GetPortals – returns list of portals and associated card readers defined for the EMerge.

• GetAccessHistory – returns a history of access activity, either for all users or for a particular
access card (as a supplement to both GetAccessDataLog and GetAccessCardDetails).

• GetTimeSpec – returns a single time spec that is in the system.

• GetTimeSpecs – returns a list of time specs that are in the system.

• AddTimeSpec – add a new time spec into the system.

• ModifyTimeSpec – modify a time spec already in the system.

• DeleteTimeSpec – delete a time spec in the system.

• GetTimeSpecGroup – returns a single time spec group that is in the system.

• GetTimeSpecGroups – returns a list of time spec groups that are in the system.

• AddTimeSpecGroup – add a new time spec group into the system.

• ModifyTimeSpecGroup – modify a time spec group already in the system.

• DeleteTimeSpecGroup – Delete a time spec group from the system.

• AddHoliday – add a new holiday into the system.

• ModifyHoliday – modify an existing holiday.

• DeleteHoliday – delete an existing holiday.

• GetHolidays – return a list of holiday keys.

• GetHoliday – return a specific holiday.

• AddReaderGroup – add a new reader group to the system.

• ModifyReaderGroup – modify an existing reader group.

• DeleteReaderGroup – delete an existing reader group.

• GetReaderGroups – return a list of reader group keys.

• GetReaderGroup – return information for a specific reader group.

• GetReaders – return a list of readers in the system.

• GetReader – return information about a single reader.

• AddPortalGroup – add a new portal group.

• ModifyPortalGroup – modify an existing portal group.

• RemovePortalGroup - remove a portal group.

• GetPortalGroups – retrieve a list of Portal Groups.

• GetPortalGroup – retrieve information about a single portal group.

The table below details the available commands and their parameters.

Version 2.5, March 25, 2007 International Electronics, Inc.

9

Command Name Parameter
Call /
Retu
rn

Usage

LASTNAME C Text last name of person being added; this is a
required field.

FIRSTNAME C Text first name of person being added

MIDDLENAME C Middle name of person

NOTES C Notes field of person record

EXPDATE C Expiration date for person record

ACTDATE C Activation date for person record

UDF1..UDF5 C User-defined fields (5)

ACCESSLEVELS

C

Block containing one or more access levels
(maximum of six) to be associated with the
Person. See below for details.

PERSONID C/R

“SUCCESS”, or “DUPLICATE” is returned as an
ERROR if PERSONID matches an existing
Person, and the Person record is not updated.

If no PERSONID is supplied, one is created for
the PERSON, and is returned in the result.

AddPerson

ERRMSG R

If the call returns an error as indicated by
<CODE>, then <ERRMSG> contains a text
description of the error condition. See Examples
at the end of this document.

LASTNAME C Text last name of person being added; this is a
required field.

FIRSTNAME C Text first name of person being added

MIDDLENAME C Middle name of person

NOTES C Notes field of person record

EXPDATE C Expiration date for person record

ACTDATE C Activation date for person record

UDF1..UDF5 C User-defined fields (5)

ModifyPerson

ACCESSLEVELS C
Block containing one or more access levels
(maximum of six) to be associated with the
Person. See below for details.

Version 2.5, March 25, 2007 International Electronics, Inc.

10

DELETED C

“TRUE” or “FALSE.” Supplying “TRUE” is the
same as a call to “RemovePerson.” Supplying
“FALSE” to a person who has been deleted
undeletes the Person.

PERSONID C “SUCCESS”, or “FAIL” if PERSONID does not
match an existing Person.

ERRMSG R

If the call returns an error as indicated by
<CODE>, then <ERRMSG> contains a text
description of the error condition. See Examples
at the end of this document.

LASTNAME C Text last name of person being added; this is a
required field.

FIRSTNAME C Text first name of person being added

MIDDLENAME C Middle name of person

NOTES C Notes field of person record

EXPDATE C Expiration date for person record

ACTDATE C Activation date for person record

UDF1..UDF5 C User-defined fields (5)

ACCESSLEVELS C
Block containing one or more access levels
(maximum of six) to be associated with the
Person. See below for details.

DELETED C

“TRUE” or “FALSE.” Supplying “TRUE” is the
same as a call to “RemovePerson.” Supplying
“FALSE” to a person who has been deleted
undeletes the Person.

PERSONID C/R

“SUCCESS”, “FAIL”, or “DUPLICATE” as
appropriate in <CODE> and the ID used by the
EMerge to identify the person added in
<DETAILS>8. This parameter may be supplied
by the caller or, if not supplied, will be assigned
by the EMerge. In all cases, it is returned or zero
if the operation fails.

EditPerson
(deprecated)

ERRMSG R

If the call returns an error as indicated by
<CODE>, then <ERRMSG> contains a text
description of the error condition. See Examples
at the end of this document.

PERSONID C ID of person to be removed (along with all of his
cards) from the EMerge

RemovePerson

result R “SUCCESS” or “FAIL” as appropriate returned in
<CODE>.

8 In this command, DUPLICATE is a successful return indicating that the record was updated rather than
inserted. A return of SUCCESS indicates an inserted record. (No reference in text to this footnote –
actually, it’s there under <DETAILS> above.)

Version 2.5, March 25, 2007 International Electronics, Inc.

11

PERSONID C PERSONID for the Person whose record the
caller wishes to have returned.

GetPerson

Result R
“SUCCESS” or “FAIL” returned as <CODE>. If
successful, then <DETAILS> contains a block of
XML describing the Person (see below).

PERSONID C If supplied, the single person matching the person
id will be returned

LASTNAME C
If these or any other of the criteria are used, the
set of people matching the restrictions will be
returned

FIRSTNAME C

MIDDLENAME C

UDF1 C

UDF2 C

UDF3 C

UDF4 C

UDF5 C

DELETED C

“TRUE”, “FALSE” or “ALL.” If “ALL” is supplied,
both DELETED and UNDELETED people are
returned. If “TRUE” is supplied, only DELETED
people are returned, if “FALSE” is supplied, only
NOT DELETED People are returned.

Defaults to “FALSE” (i.e. only returns not deleted
people).

STARTFROMKEY C Used in conjunction with NEXTKEY to retrieve the
next set of matching people

SearchPersonData

NEXTKEY R

This is returned with a value of “-1” if there are no
more people to return, or a specific value > 0 that
can be used in the next call as the
“STARTFROMKEY” value.

PERSONID C ID of person for whom the credential is to be
added

ENCODEDNUM9 C

Optional: card number that will be placed in the
“number” field of the card.

This is now preferred to CARDNUM, as it will
generate the corresponding raw hexadecimal
digits.

If HOTSTAMP or CARDID are not supplied, this is
also used as the Hot stamp #.

AddCredential

HOTSTAMP C Optional: “friendly” card number that is sometimes
different from the one used in the underlying card
format.

9 The value for ENCODEDNUM must be an integer that fits within the number of bits specified in the
CARDFORMAT for that credential.

Version 2.5, March 25, 2007 International Electronics, Inc.

12

If ENCODEDNUM is not supplied, this is used as
the Encoded # as well.

CARDNUM C

Optional: Encoded card number passed as a text
string of hexadecimal digits. This number
represents the raw card data that will be inserted
into the record without the benefit of any
additional formatting.

The use of this is now deprecated. The
functionality here can be more easily
accomplished with the ENCODEDNUM field.

CARDID C Optional: -- same meaning as HOTSTAMP. Its
use is now deprecated.

CARDFORMAT C Text name of the format to be used to decode the
card

result R
“SUCCESS”, “FAIL”, or “DUPLICATE” as
appropriate, with the latter meaning that the card
already exists, is returned in <CODE>.

PERSONID C ID of the person from whom the credential is to be
removed

ENCODEDNUM/

HOTSTAMP/
CARDNUM/
CARDID

C

One of these will be used to identify the card,
together with the CARDFORMAT.

See the distinction between these fields in
AddCredential.

CARDFORMAT C

Name of the card format to be used in interpreting
the CARDID. This is the CARDFORMAT used in
entering the credential through the user interface
of via AddCredential.

RemoveCredential

Result R “SUCCESS”, “FAIL”, or “NOT FOUND” as
appropriate is returned in <CODE>.

GetCardFormats10 Result R
“SUCCESS” or “FAIL” returned in <CODE> and a
list of card format names returned in <DETAILS>
if successful (see below).

ACCESSLEVELNAME C Name for access level

ACCESSLEVELDESCRI
PTION C Description

READERGROUPKEY C
Optional, reference to ReaderGroup for this
access level. Either this or READERKEY must be
supplied

READERKEY C Optional. Reference to Reader for this access
level.

TIMESPECGROUPKEY C Time Spec Group reference for this Access Level.

AddAccessLevel

THREATLEVELGROUP
KEY C Threat level group reference for this Access Level

10 GetCardFormats has no parameters.

Version 2.5, March 25, 2007 International Electronics, Inc.

13

ACCESSLEVELKEY R If success, the reference for this access level

ACCESSLEVELKEY C

ACCESSLEVELNAME C Name for access level

ACCESSLEVELDESCRI
PTION C Description

READERGROUPKEY C
Optional, reference to ReaderGroup for this
access level. Either this or READERKEY must be
supplied

READERKEY C Optional. Reference to Reader for this access
level.

TIMESPECGROUPKEY C Time Spec Group reference for this Access Level.

ModifyAccessLevel

THREATLEVELGROUP
KEY C Threat level group reference for this Access Level

RemoveAccessLevel ACCESSLEVELKEY C

ACCESSLEVELKEY C

ACCESSLEVELNAME R Name for access level

ACCESSLEVELDESCRI
PTION R Description

READERGROUPKEY R
Optional, reference to ReaderGroup for this
access level. Either this or READERKEY must be
supplied

READERKEY R Optional. Reference to Reader for this access
level.

TIMESPECGROUPKEY R Time Spec Group reference for this Access Level.

GetAccessLevel

THREATLEVELGROUP
KEY R Threat level group reference for this Access Level

WANTKEY C if “YES” supplied, key is returned..

GetAccessLevels11

result R
“SUCCESS” or “FAIL” returned as <CODE> and a
list of access levels returned in <DETAILS> if
successful (see below).

11 GetAccessLevels has no call parameters.

Version 2.5, March 25, 2007 International Electronics, Inc.

14

PingApp12 RESULTCODE R “SUCCESS” returned in <CODE>.

GetAPIVersion13 APIVERSION R
Returns a string “2.1” indicating the major and
minor version of the API that is currently
supported by the NBAPI

LOGID C

ID number of the last log retrieved or zero to
return the last data log in the system.
“SUCCESS”, “FAIL”, or “NOT FOUND” returned
in <CODE>. GetAccessDataLog

Result R See description below for details of returned data
from the Get data log command.

ENCODEDNUM/

HOTSTAMP/
CARDNUM/
CARDID

C

One of these will be used to identify the card,
together with the CARDFORMAT.

See the distinction between these fields in
AddCredential.

CARDFORMAT C

Name of the card format to be used in interpreting
the CARDID. This is the CARDFORMAT used in
entering the credential through the user interface
of via AddCredential.

MAXRECORDS C

Optional: Maximum number of access history
data logs to return. If omitted, the API will return
the smaller of the number of records that match
the request and the number of records that fill its
16K return buffer.

OLDESTDTTM C Optional: do not retrieve any accesses older than
this time.

GetCardAccessDetails

Result R See notes below.

LEVELNAME C Name of threat level to add.

SEQNUM C Optional: Display order for the threat level in
EMerge user interface displays.

COLOR C Optional: One of White, Green, Blue,
Yellow, Orange, or Red as desired.

AddThreatLevel

Return R “SUCCESS” or “FAIL” returned as <CODE>.

LEVELNAME C Name of threat level to edit.

SEQNUM C Optional: Display order for the threat level in
EMerge user interface displays.

COLOR C Optional: One of White, Green, Blue,
Yellow, Orange, or Red as desired.

ModifyThreatLevel

Return R “SUCCESS” or “FAIL” returned as <CODE>.

EditThreatLevel
(deprecated) LEVELNAME C

Name of threat level to edit (if it exists) or add (if it
does not exist). Note: to rename a threat level,
use RemoveThreatLevel followed by
EditThreatLevel.

12 The “application ping” command has no parameters in the call and returns either success or times out.
13 GetAPIVersion has no parameters, returns a version string, and is not supported before version 2.1 on
the server.

Version 2.5, March 25, 2007 International Electronics, Inc.

15

SEQNUM C Optional: Display order for the threat level in
EMerge user interface displays.

COLOR C Optional: One of White, Green, Blue,
Yellow, Orange, or Red as desired.

Return R “SUCCESS” or “FAIL” returned as <CODE>.

LEVELNAME C Name of the threat level to remove.
RemoveThreatLevel

Return R “SUCCESS” or “FAIL” returned as

LEVELNAME C Name of the threat level into which the system will
be set. SetThreatLevel

Return R “SUCCESS” or “FAIL” is returned in <CODE>.

LEVELGROUPNAME C Name of the threat level group to add.

LEVELNAMES C
Optional: Names of the threat levels to be added
to this threat level group. See below for an
example of the call.

AddThreatLevelGroup

Return R “SUCCESS” or “FAIL” is returned in <CODE>.

LEVELGROUPNAME C
Name of the threat level group to edit. Note that
all members of the threat level group are replaced
with each call to this function.

LEVELNAMES C
Optional: Names of the threat levels to be added
to this threat level group. See below for an
example of the call.

ModifyThreatLevelGro
up

Return R “SUCCESS” or “FAIL” is returned in <CODE>.

LEVELGROUPNAME C
Name of the threat level group to edit or insert.
Note that all members of the threat level group
are replaced with each call to this function.

LEVELNAMES C
Optional: Names of the threat levels to be added
to this threat level group. See below for an
example of the call.

EditThreatLevelGroup
(deprecated)

Return R “SUCCESS” or “FAIL” is returned in <CODE>.

LEVELGROUPNAME C Name of the threat level group to remove from the
system.

RemoveThreatLevelGr
oup

Return R “SUCCESS” or “FAIL” is returned in <CODE>.

STARTFROMKEY C Used in conjunction with NEXTKEY to retrieve the
next set of portals

GetPortals

NEXTKEY R

This is returned with a value of “-1” if there are no
more people to return, or a specific value > 0 that
can be used in the next call as the
“STARTFROMKEY” value.

GetAccessHistory STARTLOGID C
Optional: use to start with a particular log ID.
Generally used in conjunction with
<NEXTLOGID> returned from a prior call

Version 2.5, March 25, 2007 International Electronics, Inc.

16

AFTERLOGID C
Optional: used to start after a particular log ID that
was previously returned. Implies an order of
“ASCENDING”

ORDER C
Optional: can be DESCENDING or ASCENDING.
Defaults to DESCENDING (unless AFTERLOGID
is supplied)

MAXRECORDS C

Optional: maximum # of ACCESSENTRY’s
returned in one call. If not supplied, the maximum
returned in one call is limited to an internal buffer
size.

ENCODEDNUM/

HOTSTAMP/
CARDNUM/
CARDID

C

Optional: one of these will be used to identify a
particular card, together with the CARDFORMAT.

See the distinction between these fields in
AddCredential.

CARDFORMAT C

Optional: name of the card format to be used in
interpreting the card identifier information. This is
the CARDFORMAT used in entering the
credential through the user interface of via
AddCredential.

OLDESTDTTM C Optional: do not retrieve any accesses older than
this time.

Return R “SUCCESS” OR “NOT FOUND” returned in
<CODE>

GetTimeSpec TIMESPECKEY C
 Key for TimeSpec

STARTFROMKEY C Used in conjunction with NEXTKEY to retrieve the
next set of time specs

GetTimeSpecs

NEXTKEY R

This is returned with a value of “-1” if there are no
more timespecs to return, or a specific value > 0
that can be used in the next call as the
“STARTFROMKEY” value.

TIMESPECNAME C Name for timespec

DESCRIPTION C Description

STARTTIME C Start Time in HH:MM format

ENDTIME C End Time in HH:MM format

MONDAY C 1 / 0

TUESDAY C 1 / 0

WEDNESDAY C 1 / 0

THURSDAY C 1 / 0

FRIDAY C 1 / 0

SATURDAY C 1 / 0

SUNDAY C 1 / 0

AddTimeSpec

HOLIDAYGROUPS C Any of the numbers “1,2,3”, separated by
commas (e.g. “1,2”

Version 2.5, March 25, 2007 International Electronics, Inc.

17

TIMESPECKEY R Key of newly created timespec

return R “SUCCESS” or “FAIL” returned as <CODE>.

TIMESPECKEY C Key for time spec to modify

TIMESPECNAME C Name for timespec

DESCRIPTION C Description

STARTTIME C Start Time in HH:MM format

ENDTIME C End Time in HH:MM format

MONDAY C 1 / 0

TUESDAY C 1 /. 0

WEDNESDAY C 1 / 0

THURSDAY C 1 / 0

FRIDAY C 1 / 0

SATURDAY C 1 / 0

SUNDAY C 1 / 0

ModifyTimeSpec

HOLIDAYGROUPS C Any of the numbers “1,2,3”, separated by
commas (e.g. “1,2”

DeleteTimeSpec TIMESPECKEY C

GetTimeSpecGroup TIMESPECGROUPKEY C
 Key for TimeSpecGroup

STARTFROMKEY C Used in conjunction with NEXTKEY to retrieve the
next set of time spec groups

GetTimeSpecGroups

NEXTKEY R

This is returned with a value of “-1” if there are no
more timespecs to return, or a specific value > 0
that can be used in the next call as the
“STARTFROMKEY” value.

NAME C Name for timespec group

DESCRIPTION C Description

TIMESPECKEYS C List of keys for timespecs to be included in the
group

AddTimeSpecGroup

TIMESPECGROUPKEY R Key of newly created timespec group

TIMESPECGROUPKEY C Key for time spec group to modify

NAME C Name for timespec

DESCRIPTION C Description
ModifyTimeSpecGrou
p

TIMESPECKEYS C List of keys for timespecs to be included in the
group

DeleteTimeSpec TIMESPECKEY C

AddHoliday HOLIDAYNAME C

Version 2.5, March 25, 2007 International Electronics, Inc.

18

HOLIDAYGROUPS C Any of 1,2, or 3

STARTDATE C

ENDDATE C

HOLIDAYKEY R Key of holiday newly created holiday

HOLIDAYKEY C

HOLIDAYNAME C

HOLIDAYGROUPS C Any of 1,2, or 3

STARTDATE C

ModifyHoliday

ENDDATE C

DeleteHoliday HOLIDAYKEY C

HOLIDAYKEY C

HOLIDAYNAME R

HOLIDAYGROUPS R

STARTDATE R

GetHoliday

ENDDATE R

GetHolidays HOLIDAYS R List of HOLIDAYKEYs

NAME C Name for reader group

DESCRIPTION C Description

READERKEYS C List of keys for readers to be included in the group
AddReaderGroup

READERGROUPKEY R Returned identity for new reader group

READERGROUPKEY C Identifier for the reader group

NAME C

DESCRIPTION C
ModifyReaderGroup

READERKEYS C

DeleteReaderGroup READERGROUPKEY C

GetReaderGroups READERGROUPKEYS R Returns a list of reader groups

READERGROUPKEY C

NAME R

DESCRIPTION R
GetReaderGroup

READERKEYS R List of reader keys

GetReaders R List of reader keys in the system

READERKEY C

NAME R GetReader

DESCRIPTION R

AddPortalGroup NAME C Name for portal group

Version 2.5, March 25, 2007 International Electronics, Inc.

19

 DESCRIPTION C Description

 UNLOCKTIMESPECGR
OUPKEY C Timespec group key for unlocking portals in this

group

 THREATLEVELGROUP
KEY C Reference to threat level group

 PORTALKEYS C List of keys for portals to be included in the group

 PORTALGROUPKEY R Returned identity for new portal group

ModifyPortalGroup PORTALGROUPKEY C Identifier for the reader group

 NAME C

 DESCRIPTION C

 PORTALKEYS C

 UNLOCKTIMESPECGR
OUPKEY C Timespec group key for unlocking portals in this

group

 THREATLEVELGROUP
KEY C Reference to threat level group

DeletePortalGroup PORTALGROUPKEY C

GetPortalGroups PORTALGROUPKEYS R Returns a list of portal groups

GetPortalGroup PORTALGROUPKEY C

 NAME R

 DESCRIPTION R

 PORTALKEYS R List of reader keys

 UNLOCKTIMESPECGR
OUPKEY C Timespec group key for unlocking portals in this

group

 THREATLEVELGROUP
KEY C Reference to threat level group

Access Levels in EditPerson
A Person record may have up to six (6) access level associated with it. The syntax below describes
the access levels associated with a Person:

<ACCESSLEVELS>
 <ACCESSLEVEL>access level 1</ACCESSLEVEL>
 <ACCESSLEVEL>access level 2</ACCESSLEVEL>
 .
 .
 .
 <ACCESSLEVEL>access level 6</ACCESSLEVEL>
</ACCESSLEVELS>

Any access levels passed with the EditPerson API command replace all access levels in the Person
record. That is, access levels must be passed as a group. It is not necessary, however, to pass
empty access levels; any access levels not provided in an EditPerson command will be cleared by
the API.

Version 2.5, March 25, 2007 International Electronics, Inc.

20

Date Formats
There are different rules for supplying dates as input, and the dates that are retrieved. All dates are
in local time as of the time of the EMerge server.

Activation Date and Expiration Date Formats in EditPerson
The activation date (ACTDATE) and expiration date (EXPDATE), if provided, must be in the form:

YYYY-MM-DD HH:MM or YYYY-MM-DD

where the time is defaulted to 00:00 in the second case.

Returned Dates
Returned dates are shown in 2 forms. If the command does not have the ‘dateformat=”tzoffset”’
attribute, the dates are returned as:

YYYY-MM-DD HH:MM:SS

If ‘dateformat=”tzoffset”’ is supplied as an attribute to the command, then thereturned value is in the
format:

YYYY-MM-DD HH:MM:SS +/-HHMM

Where, for example, EST timezone would be “-0500” (indicating -5 hours and 0 minutes offset from
GMT).

Using the ENCODEDNUM, HOTSTAMP, CARDID and CARDNUM
Parameters in AddCredential
Callers have the option of supplying an ENCODEDNUM, HOTSTAMP, CARDID or CARDNUM with
the AddCredential and RemoveCredential calls. CARDID is simply a synonym for HOTSTAMP and
will not be discussed further. CARDNUM represents the internal bit representation of a card as
stored in the database, and its use is deprecated, although it will be described below.

ENCODEDNUM and HOTSTAMP correspond to the fields that show up in the EMerge UI. They
often appear as the same values. However, their meaning is quite different. The ENCODEDNUM
that shows up in the UI (and here in the NBAPI) is an integer that is inserted into the card according
to the bit representation of the card format.

For example, the standard Wiegand26 format that comes with the EMerge displays the following in
the NB UI:

-FFFFFFF FNNNNNNN NNNNNNNN N-

The “-“ represent bits that are ignored, the “FFFF” represents the facility code, and the “NNNN”
represent bits where the ENCODEDNUM is stored.

Version 2.5, March 25, 2007 International Electronics, Inc.

21

HOTSTAMP, while it defaults to the same value as ENCODEDNUM, is often a number that appears
on the credential itself as an externally visible integer and may be quite different than the
ENCODEDNUM.

In the NBAPI, either will be used for both if only one is supplied.

The CARDNUM Parameter and Card Format in AddCredential
As stated before, use of the CARDNUM parameter is now deprecated.

The CARDNUM parameter is the data stream that is encoded on the credential. In the database, it
is a 48-bit value stored in the form it takes as it is read from the credential. That means that it is the
complete data stream as it appears in the credential, and padded with zeroes to the right. The
CARDNUM value passed to the API includes enough zero bits (padded to the right) to make
complete bytes. That value is passed as the ASCII equivalent14 of the hexadecimal data that form
those bytes. The API will further pad to the right with zeroes until the full 48 bits is reached.

By way of example, consider the following 26 bits as read off a typical Wiegand card and then
padded to the right with zeroes to make an integral number of bytes:

00000101 11000001 11011111 10 00000101 110000001 11011111 10000000

This value is equivalent to 0x05C1DF80 (hex) or “05C1DF80” in ASCII. Note that this 8-character
string represents 32 bits. Zeroes are added to the right to make 48 bits, resulting in the value
“05C1DF8000000”. The caller could have, of course, simply passed this fully padded value and
obtained the same result.

The raw data read from a credential in real time by the EMerge is interpreted using a set of rules
defined by the card format. Card formats are defined in the EMerge user interface with the SETUP >
ACCESS CONTROL > CARD FORMATS command and a list of the card format names can be
retrieved in the API using the GetCardFormats command.

The response to the GetCardFormats API command is similar to:

<NETBOX>
 <RESPONSE command="GetCardFormats" num="1">
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <CARDFORMATS>
 <CARDFORMAT>Wiegand26</CARDFORMAT>
 <CARDFORMAT>ISO34bit</CARDFORMAT>
 </CARDFORMATS>
 </DETAILS>
 </RESPONSE>
</NETBOX>

14 Only upper case characters may appear in the ASCII-equivalent representation of the hexadecimal
data.

Version 2.5, March 25, 2007 International Electronics, Inc.

22

Response to GetPerson
When the GetPerson command returns a <CODE> of “SUCCESS”, then <DETAILS> contains a block
of XML with data about the Person. The entire response appears as:

<NETBOX>
 <RESPONSE command=”GetPerson” num=command-number>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <PERSONID>ID of Person record</PERSONID>
 <FIRSTNAME>Person’s first name</FIRSTNAME>
 <LASTNAME>Person’s last name</LASTNAME>
 <DELETED>TRUE/FALSE</DELETED>
 <ACCESSLEVELS>
 <ACCESSLEVEL>access level 1</ACCESSLEVEL>
 <ACCESSLEVEL>access level 2</ACCESSLEVEL>
 .
 .
 .
 <ACCESSLEVEL>access level 6</ACCESSLEVEL>
 </ACCESSLEVELS>
 </DETAILS>
 </RESPONSE>
</NETBOX>

Note that only the access levels currently assigned are returned, and if there are none assigned,
then none are returned.

Calling SearchPersonData
When calling SearchPersonData, there are various options in making the call. If <PERSONID> is
supplied in the call, then exactly one matching person is returned. In the other cases, the call
retrieves the matching people.

In the boundary case, with no parameters supplied, all people on the EMerge are returned. If there
are more people than can be returned in a single response, a <NEXTKEY> element is returned that
allows the next call to be made. In this way, iterative calls can retrieve as many people as required,
by keeping all the other parameters the same, and supplying a new <NEXTKEY> element for each
successive call.

An example of a call to retrieve a single person is:

<NETBOX-API>
 <COMMAND name=”SearchPersonData” num=”1” dateformat=”tzoffset”>
 <PARAMS>
 <PERSONID>_3</PERSONID>
 </PARAMS>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

Version 2.5, March 25, 2007 International Electronics, Inc.

23

An example of a (second) call to retrieve multiple people with restrictions, after the first response
returned a <NEXTKEY> parameter is:

<NETBOX-API>
 <COMMAND name=”SearchPersonData” num=”1”>
 <PARAMS>
 <LASTNAME>Smith</LASTNAME>
 <STARTFROMKEY>32</STARTFROMKEY>
 </PARAMS>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

Response to SearchPersonData
When the SearchPersonData command returns a <CODE> of “SUCCESS”, then <DETAILS>
contains a block of XML with data about one or more people. The entire response appears as:

<NETBOX>
 <RESPONSE command=”SearchPersonData” num=command-number>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <PEOPLE>
 <PERSON>
 <PERSONID>ID of Person record</PERSONID>
 <FIRSTNAME>Person’s first name</FIRSTNAME>
 <LASTNAME>Person’s last name</LASTNAME>
 <DELETED>TRUE/FALSE</DELETED>
 …
 <ACCESSLEVELS>
 <ACCESSLEVEL>access level 1</ACCESSLEVEL>
 <ACCESSLEVEL>access level 2</ACCESSLEVEL>
 …
 </ACCESSLEVELS>
 <ACCESSCARDS>
 <ACCESSCARD>
 <ENCODEDNUM>encoded #</ENCODEDNUM>
 <HOTSTAMP>hot stamp #</HOTSTAMP>
 <CARDFORMAT>name of card format</CARDFORMAT>
 <DISABLED>1 or 0</DISABLED>
 </ACCESSCARD>
 <ACCESSCARD>
 …
 </ACCESSCARD>
 </ACCESSCARDS>
 </PERSON>
 <PERSON>
 …
 </PERSON>
 </PEOPLE>
 <NEXTKEY>internal key to pass into next request</NEXTKEY>
 </DETAILS>
 </RESPONSE>
</NETBOX>

Version 2.5, March 25, 2007 International Electronics, Inc.

24

The breakdown of information is as follows. As many people are returned as possible that match the
query. If there is insufficient space in the internal buffer, <NEXTKEY> is returned as the parameter to
use to retrieve the next set of people.

For each person, the list of access levels and access cards associated with that person are returned.
If there are no access levels, none are returned. For the access cards, the newer <ENCODEDNUM>
and <HOTSTAMP> attributes are returned (see AddCredential) in place of <CARDID> and
<CARDNUM>.

Response to GetAccessLevels
When the GetAccessLevels command returns a <CODE> of “SUCCESS” then <DETAILS> contains
a list of access level names currently defined in the system. The entire return would appears as
follows:

<NETBOX>
 <RESPONSE command=”GetAccessLevels” num=command-number>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <ACCESSLEVELS>
 <ACCESSLEVEL>access level 1</ACCESSLEVEL>
 <ACCESSLEVEL>access level 2</ACCESSLEVEL>
 .
 .
 .
 <ACCESSLEVEL>access level 6</ACCESSLEVEL>
 </ACCESSLEVELS>
 </DETAILS>
 </RESPONSE>
</NETBOX>

Note that only the access levels currently assigned are returned, and if there are none assigned,
then none are returned.

Response to the GetAccessCardDetails Command
The GetCardAccessDetails API command is used to return recent access events associated with a
given credential as defined by that credential’s CARDID and CARDFORMAT parameters. A typical
call looks like:

<NETBOX-API>
 <COMMAND name="GetAccessCardDetails" num="1">
 <PARAMS>
 <ENCODEDNUM>3527</ENCODEDNUM>
 <CARDFORMAT>Code30</CARDFORMAT>
 <MAXRECORDS>3</MAXRECORDS>
 </PARAMS>
 </COMMAND>
</NETBOX-API>

In this example, the most recent 3 access events are requested for a credential with ENCODEDNUM
3527and a CARDFORMAT called “Code30.” If the request succeeds (<CODE>SUCCESS</CODE>)
then the following are returned:

Version 2.5, March 25, 2007 International Electronics, Inc.

25

• PERSONID – the external person ID associated with the person who owns the credential
specified credential. This is the field in the person record labeled “ID #”.

• DISABLED – 1 if the credential is currently marked disabled, and 0 otherwise.

• DTTM – The date and time associated with the first access data log that exists for the stated
credential on the day the request is made to the API. Note that this field will be empty if there is
no such access.

• PORTALNAME – Name of the portal associated with the first access of the calendar day referred
to by the DTTM value.

• ACCESSES – a list of access data log records responsive to the request. Each data log returned
is enclosed within <ACCESS>…</ACCESS> tags, and includes the following fields:

o DTTM – The date and time associated with the data log.
o TYPE – 1 for a valid access, 2 for a rejected access attempt.
o PORTALNAME – name of the portal associated with the access.
o PORTALKEY – unique identifier for the portal that matches to the GetPortals query.
o READERKEY – unique identifier for the reader that had the access
o REASON – Reason code associated with a rejected access attempt. See the table

included with the description of GetAccessDataLog for details.

A sample might look like:

<NETBOX>
 <RESPONSE command="GetAccessCardDetails" num="1">
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <PERSONID>44886</PERSONID>
 <DISABLED>0</DISABLED>
 <ACCESSES>
 <ACCESS>
 <DTTM>2005-11-09 15:07:03</DTTM>
 <TYPE>1</TYPE>
 <PORTALNAME>Front Door</PORTALNAME>
 <PORTALKEY>30</PORTALKEY>
 <READERKEY>3</READERKEY>
 <LOGID>523</LOGID>
 <REASON></REASON>
 </ACCESS>
 <ACCESS>
 <DTTM>2005-11-09 11:38:15</DTTM>
 <TYPE>1</TYPE>
 <PORTALNAME>Garage</PORTALNAME>
 <PORTALKEY>41</PORTALKEY>
 <READERKEY>4</READERKEY>
 <LOGID>521</LOGID>
 <REASON></REASON>
 </ACCESS>
 <ACCESS>
 <DTTM>2005-09-15 10:02:57</DTTM>
 <TYPE>1</TYPE>
 <PORTALNAME>Main Gate</PORTALNAME>
 <PORTALKEY>23</PORTALKEY>
 <READERKEY>5</READERKEY>
 <LOGID>479</LOGID>
 <REASON></REASON>

Version 2.5, March 25, 2007 International Electronics, Inc.

26

 </ACCESS>
 </ACCESSES>
 <DTTM>2005-11-09 11:38:15</DTTM>
 <PORTALNAME>Garage</PORTALNAME>
 <PORTALKEY>41</PORTALKEY>
 <READERKEY>4</ READERKEY>
 <NEXTLOGID>450</NEXTLOGID>
 </DETAILS>
 </RESPONSE>
</NETBOX>

Response to the GetAccessDataLog Command
Responses to the GetAccessDataLog command indicate the details of card access attempts, and
have the form:

<NETBOX>
 <RESPONSE command=”GetAccessDataLog” num=command-number>
 <CODE>SUCCESS|FAIL|NOT FOUND</CODE>
 <DETAILS>
 <LOGID>logid</LOGID>
 <PERSONID>ID of Person record</PERSONID>
 <READER>name of reader</READER>
 <READERKEY>unique identifier for reader</READERKEY>
 <DTTM>date, time e.g 2005-01-03 23:57:21</DTTM>
 <TYPE>1=access granted, 2=access denied</TYPE>
 <REASON>reason code from table below</REASON>
 </DETAILS>
 </RESPONSE>
</NETBOX>

Reason codes are provided only for invalid access attempts, and are described in the table below:

Reason
code Description

1 Card not in local database

2 Card not in IEINC database

3 Wrong time

4 Wrong location

5 Card misread

6 Tailgate violation

7 Anti-passback violation

8 --unused--

9 Wrong day

10 – 13 --unused--

14 Card expired

15 Card bit length mismatch

Version 2.5, March 25, 2007 International Electronics, Inc.

27

By way of example, a call such as:

<NETBOX-API>
 <COMMAND name=”GetAccessDataLog” num=”1”>
 <PARAMS>
 <LOGID>999</LOGID>
 </PARAMS>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

might return a result such as:

<NETBOX>
 <RESPONSE command=”GetAccessDataLog” num=”1”>
 <CODE>999</CODE>
 <DETAILS>
 <PERSONID>1000</PERSONID>
 <READER>Garage-in</READER>
 <READERKEY>5</READERKEY>
 <DTTM>2005-01-03 23:57:21</DTTM>
 <TYPE>2</TYPE>
 <REASON>4</REASON>
 </DETAILS>
 </RESPONSE>
</NETBOX>

In this case, an invalid access attempt at 23:57:21 on January 3, 2005 occurred at the “Garage-in”
reader by the Person whose ID is 1000. The reason for rejection was that the card was used at the
wrong location.

Calling EditThreatLevelGroup
EditThreatLevelGroup is called to add (if the group does not exist) or edit (if it does) a threat level
group. A call might appear like:

<NETBOX-API>
 <COMMAND name=”EditThreatLevelGroup” num=”1”>
 <PARAMS>
 <LEVELGROUPNAME>Hot</LEVELGROUPNAME>
 <LEVELNAMES>
 <LEVELNAME>RedLevel</LEVELNAME>
 <LEVELNAME>OrangeLevel</LEVELNAME>
 </LEVELNAMES>
 </PARAMS>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

Note that the names in the <LEVELNAMES> are names of individual levels that must already exist in
the system.

Version 2.5, March 25, 2007 International Electronics, Inc.

28

Calling GetPortals
An example of calling GetPortals successively if <NEXTKEY> was returned on a previous call is:

<NETBOX-API>
 <COMMAND name=”GetPortals” num=”1”>
 <PARAMS>
 <STARTFROMKEY>32</STARTFROMKEY>
 </PARAMS>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

Response to the GetPortals
Responses to the GetPortals command list the portals and their associated card readers:

<NETBOX>
 <RESPONSE command=”GetPortals” num=command-number>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <PORTALS>
 <PORTAL>
 <NAME>name of portal</NAME>
 <PORTALKEY>unique id for portal</PORTALKEY>
 <READERS>
 <READER>
 <READERKEY>unique id for reader</READERKEY>
 <NAME>name of reader</NAME>
 <PORTALORDER>1 or 2</PORTALORDER>
 </READER>
 <READER>
 …
 </READER>
 </READERS>
 </PORTAL>
 <PORTAL>
 …
 </PORTAL>
 </PORTALS>
 <NEXTKEY>key of next portal</NEXTKEY>
 </DETAILS>
 </RESPONSE>
</NETBOX>

The <PORTALORDER> element of a READER indicates whether it is in the first or the second
reader position in a Portal. While this is not guaranteed, the first position is always used as the
incoming reader; the second position is optional, and is used as the outgoing reader in a dual reader
door when it exists.

Version 2.5, March 25, 2007 International Electronics, Inc.

29

Calls and Responses to GetAccessHistory
GetAccessHistory serves multiple purposes:

• to retrieve at any one point in time a history of accesses that are available on the EMerge;

• over time to retrieve any new accesses that may have occurred.

• To retrieve a longer history of accesses for a particular card.

These three examples are illustrated below.

<NETBOX-API>
 <COMMAND name=”GetAccessHistory” num=”1” dateformat=”tzoffset”>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

This will return the most recent access history records, in reverse time order, up to some internal
maximum, for example:

<NETBOX>
 <RESPONSE command=” GetAccessHistory” num=command-number>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <ACCESSES>
 <ACCESS>
 <LOGID>402</LOGID>
 <PERSONID>uid45</PERSONID>
 <READER>reader 1</READER>
 <DTTM>2006-06-23 10:31:06 -0400</DTTM>
 <TYPE>1</TYPE>
 <READERKEY>3</READERKEY>
 <PORTALKEY>30</PORTALKEY>
 </ACCESS>
 <ACCESS>
 <LOGID>397</LOGID>
 <PERSONID>uid23</PERSONID>
 <READER>reader 2</READER>
 <DTTM>2006-06-23 10:15:06 -0400</DTTM>
 <TYPE>1</TYPE>
 <READERKEY>5</READERKEY>
 <PORTALKEY>15</PORTALKEY>
 </ACCESS>
 …
 </ACCESSES>
 <NEXTLOGID>310</NEXTLOGID>
 </DETAILS>
 </RESPONSE>
</NETBOX>

Version 2.5, March 25, 2007 International Electronics, Inc.

30

A subsequent call using the <NEXTLOGID> value will retrieve the next older chunk of log records,
e.g.:

<NETBOX-API>
 <COMMAND name=”GetAccessHistory” num=”1” dateformat=”tzoffset”>
 <STARTLOGID>310</STARTLOGID>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

Another call later using <AFTERLOGID> will retrieve any records which have been created since the
first call, e.g.:

<NETBOX-API>
 <COMMAND name=”GetAccessHistory” num=”1” dateformat=”tzoffset”>
 <AFTERLOGID>402</AFTERLOGID>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

These would be returned in ascending order, going forwards, e.g.:

<NETBOX>
 <RESPONSE command=” GetAccessHistory” num=command-number>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <ACCESSES>
 <ACCESS>
 <LOGID>405</LOGID>
 <PERSONID>uid4</PERSONID>
 <READER>reader 2</READER>
 <DTTM>2006-06-23 10:31:06 -0400</DTTM>
 <TYPE>1</TYPE>
 <READERKEY>5</READERKEY>
 <PORTALKEY>30</PORTALKEY>
 </ACCESS>
 </ACCESSES>
 <NEXTLOGID>-1</NEXTLOGID>
 </DETAILS>
 </RESPONSE>
</NETBOX>

This indicates that only 1 new entry was found. Let’s say after this another call is made, e.g.:

<NETBOX-API>
 <COMMAND name=”GetAccessHistory” num=”1” dateformat=”tzoffset”>
 <AFTERLOGID>405</AFTERLOGID>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

If there are no more, it will return “NOT FOUND”, i.e.:

<NETBOX>
 <RESPONSE command=” GetAccessHistory” num=”1”>
 <CODE>NOT FOUND</CODE>
 </RESPONSE>
</NETBOX>

Version 2.5, March 25, 2007 International Electronics, Inc.

31

This next query is for entries matching a particular access card. It is intended as a following call to
the GetAccessCardDetails call.

<NETBOX-API>
 <COMMAND name=”GetAccessHistory” num=”1” dateformat=”tzoffset”>
 <ENCODEDNUM>3527</ENCODEDNUM>
 <CARDFORMAT>Code30</CARDFORMAT>
 <STARTLOGID>310</STARTLOGID>
 <MAXRECORDS>100</MAXRECORDS>
 <OLDESTDTTM>2006-06-22 00:00:01</OLDESTDTTM>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

Notes on TimeSpecs and TimeSpecGroups
TimeSpecs and TimeSpecGroups are tightly related. The rest of the IEI system refers to time
schedules using only TimeSpecGroups. A TimeSpecGroup may be constructed out of one or more
TimeSpecs. This is the only use in version 2.5 and later for TimeSpecs.

The IEI system is initialized with 2 TimeSpecs and 2 corresponding TimeSpecGroups: “Always” and
“Never.” The “Always” and “Never” Time Specs are returned in a GetTimeSpecs call, and can be
used in constructing a TimeSpecGroup.

Likewise, the “Always” and “Never” Time Spec Groups are returned in a GetTimeSpecGroups call.

For every TimeSpec that is created, either through the UI or through the NBAPI, a corresponding
TimeSpecGroup is automatically created. This TimeSpecGroup is the “singular” TimeSpecGroup that
only contains the TimeSpec. Likewise, whenever a TimeSpec is modified or deleted, a
corresponding TimeSpecGroup is modified or deleted.

As with the system-initialized TimeSpecGroups, the “singular” TimeSpecGroups constructed by
adding a new TimeSpec are returned in a call to “GetTimeSpecGroups.”

While you can construct a new TimeSpecGroup out of any combination of existing TimeSpecs, you
cannot modify or delete any of the “singular” TimeSpecGroups that either existed at system
initialization time, or were created by adding new Time Specs. Nor can you modify or delete the
“Always” and “Never” Time Specs that exist at system initialization time.

Calling GetTimeSpec
This works by supplying a TimeSpec Key. This will typically come from the list of Time Spec Keys in
a Time Spec Group.

<NETBOX-API>
 <COMMAND name=”GetTimeSpec” num=”1”>
 <TIMESPECKEY>3</TIMESPECKEY>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

Version 2.5, March 25, 2007 International Electronics, Inc.

32____

Response to GetTimeSpec
Response to the GetTimeSpec command:

<NETBOX>
 <RESPONSE command=”GetTimeSpec” num=command-number>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <TIMESPEC>
 <TIMESPECKEY>unique id for timespec</TIMESPECKEY>
 <TIMESPECNAME>name of timespec</TIMESPECNAME>
 <DESCRIPTION>description for timespec</DESCRIPTION>
 <MONDAY>TRUE</MONDAY>
 <TUESDAY>TRUE</TUESDAY>
 …
 <STARTTIME>HH:MM</STARTTIME>
 <ENDTIME>HH:MM</ENDTIME>
 <HOLIDAYGROUPS>1,2,3</HOLIDAYGROUPS>
 </TIMESPEC>
 </DETAILS>
 </RESPONSE>
</NETBOX>

Calling GetTimeSpecs
This works identically to GetPortals, in that a “STARTFROMKEY” can be passed in to return the next
set of Time Specs, if more than one call needs to be made.

Response to GetTimeSpecs
Responses to the GetTimeSpecs command list time specs

<NETBOX>
 <RESPONSE command=”GetTimeSpecs” num=command-number>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <TIMESPECS>
 <TIMESPEC>
 <TIMESPECKEY>unique id for timespec</TIMESPECKEY>
 <TIMESPECNAME>name of timespec</TIMESPECNAME>
 <DESCRIPTION>description for timespec</DESCRIPTION>
 <MONDAY>TRUE</MONDAY>
 <TUESDAY>TRUE</TUESDAY>
 …
 <STARTTIME>HH:MM</STARTTIME>
 <ENDTIME>HH:MM</ENDTIME>
 <HOLIDAYGROUPS>1,2,3</HOLIDAYGROUPS>
 </TIMESPEC>
 <TIMESPEC>
 …
 </TIMESPEC>
 </TIMESPECS>
 <NEXTKEY>key of next timespec</NEXTKEY>
 </DETAILS>
 </RESPONSE>
</NETBOX>

Version 2.5, March 25, 2007 International Electronics, Inc.

33

Calling GetTimeSpecGroup
As with GetTimeSpec, this specifies a key that might be retrieved from another part of the system.

<NETBOX-API>
 <COMMAND name=”GetTimeSpecGroup” num=”1”>
 <TIMESPECGROUPKEY>4</TIMESPECGROUPKEY>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

Response to GetTimeSpecGroup
Responses to the GetTimeSpecGroup command:

<NETBOX>
 <RESPONSE command=”GetTimeSpecGroups” num=command-number>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <TIMESPECGROUP>
 <TIMESPECGROUPKEY>unique id for group</TIMESPECGROUPKEY>
 <NAME>name of timespec</NAME>
 <DESCRIPTION>description for group</DESCRIPTION>
 <TIMESPECKEYS>
 <TIMESPECKEY>ID for timespec</TIMESPECKEY>
 <TIMESPECKEY>ID for timespec</TIMESPECKEY>
 …
 </TIMESPECKEYS>
 </TIMESPECGROUP>
 </DETAILS>
 </RESPONSE>
</NETBOX>

Calling GetTimeSpecGroups
This also works identically to GetPortals, in that a “STARTFROMKEY” can be passed in to return the
next set of Time Spec Groups, if more than one call needs to be made.

Response to GetTimeSpecGroups
Responses to the GetTimeSpecGroups command list time specs

<NETBOX>
 <RESPONSE command=”GetTimeSpecGroups” num=command-number>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <TIMESPECGROUPS>
 <TIMESPECGROUP>
 <TIMESPECGROUPKEY>unique id for group</TIMESPECGROUPKEY>
 <NAME>name of timespec</NAME>
 <DESCRIPTION>description for group</DESCRIPTION>
 <TIMESPECKEYS>
 <TIMESPECKEY>ID for timespec</TIMESPECKEY>
 <TIMESPECKEY>ID for timespec</TIMESPECKEY>
 …

Version 2.5, March 25, 2007 International Electronics, Inc.

34

 </TIMESPECKEYS>
 </TIMESPECGROUP>
 <TIMESPECGROUP>
 …
 </TIMESPECGROUP>
 </TIMESPECGROUPS>
 <NEXTKEY>key of next group</NEXTKEY>
 </DETAILS>
 </RESPONSE>
</NETBOX>

Errors in API Processing
Errors in processing of specific, well formed API commands are explained above. Errors which
prevent the processing of commands return a special XML blob:

<NETBOX>
 <RESPONSE>
 <APIERROR>apiErrorCode</APIERROR>
 </RESPONSE>
</NETBOX>

Where apiErrorCode is defined as in the table below:

apiError Code Description

API_INIT_FAIL 1 Database error (database not running, etc.)

API_DISABLED 2 The API processor is not activated for this EMerge

API_NOCOMMAND 3 No APIcommand parameter was passed to the API processor

API_PARSE_ERROR 4 The APIcommand data could not be parsed by the XML parser

API_AUTH_FAILURE 5 API authorization failure (if authorization enabled in the user
interface)

API_UNKNOWN_COMMAND 6 The API processor did not recognize the command passed in
the APIcommand parameter.

Version 2.5, March 25, 2007 International Electronics, Inc.

35

Message Authentication Code
The message authentication code (MAC) is a code based on the SHA-1 hashing algorithm that is
designed to be unique for every message and impossible to reverse in practice. The MAC is
transmitted in the <MAC> tag of the message and has the form:

 111111111122222222223333333333444444444455555555556
123456789012345678901234567890123456789012345678901234567890
RAN
1

RAN
2

SEQ

 SHA-1 result as 40 hexadecimal
 digits

where RAN1 and RAN2 are two random numbers, each of five decimal digits; SEQ # is the
sequence number that is incremented for each message transmitted by the caller; and, the balance
is the 40-hex digit SHA-1 hash as produced by the algorithm provided.

Generating the MAC
Code in C is provided by IEI and other organizations to calculate the SHA-1 digest used in the MAC.
IEI also provides a utility function, generate_mac, to create the MAC from caller-provided inputs as
follows:

#define SHA_SECRET_SZ 8 //the secret is 8 bytes long

// generate_mac:
// takes the msg, seq and secret and generates a SHA_MAC_LEN + 1
// byte mac (null terminated) which is then stored in mac
// and a pointer to mac is returned
//
// NOTES:
//
// 1. msg must be null terminated and should not contain the
// <MAC>...</MAC> tags.
//
// 2. secret must be null terminated and < SHA_SECRET_SZ bytes long
//
unsigned char *generate_mac(unsigned char *msg, unsigned long seq,
unsigned char *secret, unsigned short rand1, unsigned short rand2,
unsigned char *mac);

Version 2.5, March 25, 2007 International Electronics, Inc.

36

Examples
For example, the XML generated to add a person might appear as follows:

<NETBOX-API>
 <COMMAND name=”EditPerson” num=”1”>
 <PARAMS>
 <LASTNAME>Doe</LASTNAME>
 <FIRSTNAME>John</FIRSTNAME>
 <ACCESSLEVELS>
 <ACCESSLEVEL>GeneralAccess</ACCESSLEVEL>
 <ACCESSLEVEL>ParkingAccess</ACCESSLEVEL>
 </ACCESSLEVELS>
 </PARAMS>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

The command would return information such as:

<NETBOX>
 <RESPONSE command=”EditPerson” num=”1”>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <PERSONID>_123</PERSONID>
 </DETAILS>
 </RESPONSE>
</NETBOX>

If an error had occurred, then the ERRMSG tag would give a text description of the error condition as
in:

<NETBOX>
 <RESPONSE command=”EditPerson” num=”1”>
 <CODE>FAIL</CODE>
 <DETAILS>
 <ERRMSG>
 Access level does not exist “ParkingAccess”
 </ERRMSG>
 </DETAILS>
 </RESPONSE>
</NETBOX>

Once the person record has been instantiated, a credential (card) can be added to it as follows:

<NETBOX-API>
 <COMMAND name=”AddCredential” num=”1”>
 <PARAMS>
 <PERSONID>_123</PERSONID>
 <CARDNUM>AF2621B5</CARDNUM>
 <CARDFORMAT>Wiegand26</CARDFORMAT>
 </PARAMS>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

Version 2.5, March 25, 2007 International Electronics, Inc.

37

Because multiple commands can be included in a single XML call, the creation of a Person and
association of credentials can be accomplished in one transaction (if the caller provides the
PERSONID):

<NETBOX-API>
 <COMMAND name=”EditPerson” num=”1”>
 <PARAMS>
 <LASTNAME>Doe</LASTNAME>
 <FIRSTNAME>John</FIRSTNAME>
 <ACCESSLEVELS>
 <ACCESSLEVEL>GeneralAccess</ACCESSLEVEL>
 <ACCESSLEVEL>ParkingAccess</ACCESSLEVEL>
 </ACCESSLEVELS>
 <PERSONID>X1000</PERSONID>
 </PARAMS>
 </COMMAND>
 <COMMAND name=”AddCredential” num=”2”>
 <PARAMS>
 <PERSONID>X1000</PERSONID>
 <CARDNUM>AF2621B5</CARDNUM>
 <CARDFORMAT>Wiegand26</CARDFORMAT>
 </PARAMS>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

Assuming that the commands above were successfully executed by the EMerge, the response would
be as follows:

<NETBOX>
 <RESPONSE command=”EditPerson” num=”1”>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <PERSONID>X1000</PERSONID>
 </DETAILS>
 </RESPONSE>
 <RESPONSE command=”AddCredential” num=”2”>
 <CODE>SUCCESS</CODE>
 </RESPONSE>
</NETBOX>

